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The current classification of crystal point symmetries, which dates back to the 1935 edition of the Interna- 
tional Tables, is readily updated on the basis of the lattice. The seven lattice point symmetries define the 
'crystal systems'. First, for each lattice symmetry, the shape of the conventional cell and the resulting co- 
ordinate axes are chosen and labelled on metrical considerations. The possible oriented crystal symmetries 
are then all the subgroups of the lattice symmetry, down to its lowest merohedry, such as the ogdohedry 311 
(subgroup of index 8) of the hexagonal lattice (6/m 2/m 2/m) or the tetartohedry 31 of the rhombohedral 
lattice (3 2/m). The resulting 44 symmetry symbols are encountered in crystallographic practice. As to the 
celebrated 32 'crystal classes', which hark back to 1830, they are the only possibilities for wooden crystal 
models, which obey the Law of Rationality but ignore the orientation of the underlying crystal lattice. 
Combination of the 44 oriented crystal symmetries with the lattice-centering modes yields 96 oriented 
representations for the 73 symmorphic space groups. 

Introduction 

The purpose of this note is to present a classification of 
crystal point symmetries that is based on the lattice to 
serve the needs of the practicing crystallographer. 

* Temporary address Department of Physics, Arizona State 
University, Tempe, Arizona, USA. 

On his way towards a crystal-structure determina- 
tion, the crystallographer first determines the shape of 
the smallest conventional cell and the lattice point 
symmetry. He measures the cell edges, choosing and 
labelling them as coordinate axes in some arbitrary 
but unique way, so as to be able to record the system- 
atic extinctions; these yield the mode of centering of 
the lattice and eventually the complete aspect symbol, 
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Table 1. Classification of crystal symmetries 
See footnotes for details of column headings. 
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Table i (cont.) 
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Column 1 : Initial of the name used to designate the shape of the conventional cell: cubic, hexagonal, rhombohedral, tetragonal, orthorhom- 
bic, monoclinic, anorthic (= triclinic). 

Column 2: The seven lattice point symmetries, each one followed by its subgroups down to the lowest merohedry. Identity symbol 1 indicates 
a direction that is a symmetry direction for the lattice, but not for the crystal. The smallest conventional cell is chosen; its edges along lattice 
symmetry directions or shortest translations are labelled in an arbitrary, but unique, way. The number of groups in each system is shown in 
lower right corner. The derivation yields 44 different symbols. 

Column 3: Lattice modes needed in each lattice. For each system, in lower right corner, number of combinations of crystal symmetry with 
lattice mode. Under r note the choice between two descriptions, rP and hR, where hR is not a mode of the hexagonal lattice. The total number 
of combinations is 96 (~jl columns 4-5). 

Columns 4-5: This scheme differs from that of columns 2-3 in that only one subgroup out of two appears in five cases (four in the hexagonal 
and one in the tetragonal) and only one out of three (rnrn2) in the orthorhombic system. The 44 symmetry symbols of columns 2-3 are now 
reduced to 37, but the use of multiple cells is now necessary (note new lattice modes: H in h, C and F in t). Lattice modes collected between 
parentheses are not considered distinct, under o and rn. The number of combinations is reduced to 73; they represent the 73 symmorphic 
space groups (alias 'arithmetic crystal classes'). 

Column 6: The traditional 32 crystal point symmetries, which do not take the cell into account. Strictly speaking they are the possible 
symmetries, not of crystals, but of wooden crystal-form models, whose orientation is not related to any lattice. The wooden models obey the 
Law of Rationality and the restriction that it imposes on the order of the rotation axes. Comparison of column 6 with columns 2-3 shows that 
the 32 point groups are inadequate to express the crystallographic facts. 

wi th  which  several  space g roups  can be compat ib le .  

The classification of crystal point symmetries 

It is na tura l ,  unde r  the c i rcumstances ,  to choose  the 
shape  of the smal les t  c o n v e n t i o n a l  cell, which  depends  
on  the po in t  s y m m e t r y  of the lattice, as the basis on  
which  to define the systems.  There  are seven such cell 
shapes  and  seven latt ice symmet r i e s ;  c o r r e s p o n d i n g l y  
there  are seven systems. Let us give (Table  1, c o l u m n  1) 
the ini t ia l  of  the n a m e  tha t  des igna tes  the shape  of the 
smal les t  c o n v e n t i o n a l  cell (see Appendix ,  N o t e  1). 
c, h, r, t, o, m, a, f rom cubic  to anor th ic .  To  avoid  con-  
flict wi th  the t of  t e t ragonal ,  t r icl inic is called anor th ic .  
A smal l  let ter  is used in o rder  to d i s t ingu ish  the shape  
of the cell f rom its cen te r ing  mode,  the lat ter  be ing  
des igna ted  by a capital .  In c o l u m n  2 each sys tem is 

headed  by the h o l o h e d r y  (see Appendix ,  N o t e  2), i.e. 
the crys ta l  s y m m e t r y  tha t  is the  same as the lat t ice 
symmet ry .  The  h o l o h e d r y  is fol lowed by all its mero-  
hedries,  tha t  is to say all the  subg roups  which,  as crys ta l  
symmetr ies ,  requi re  the h o l o h e d r y  as lat t ice symmet ry .  
U n d e r  h, for ins tance,  the last  s u b g r o u p  of 6/m 2 /m 2/m 
is 311, the h e x a g o n a l  o g d o h e d r y ,  whose  order  is ~ tha t  
of the lat t ice s y m m e t r y ;  unde r  r the  last s u b g r o u p  of 
-32/m is 31, the r h o m b o h e d r a l  t e t a r tohedry ,  whose  
order  is ¼ tha t  of its ho lohedry .  

The  n u m b e r  of i tems (three, two or one) in the symbo l  
o f a  m e r o h e d r y  (o fa  lat t ice s y m m e t r y ) -  tha t  is, a crys ta l  
s y m m e t r y  wi th in  the c o r r e s p o n d i n g  sys tem - is the  
same as the n u m b e r  of k inds  of s y m m e t r y  d i rec t ions  
in the lattice. These  d i rec t ions  are the Bl ickr ich tungen  
(see Appendix ,  N o t e  3) of Car l  H e r m a n n .  In mero-  
hedries  the miss ing  s y m m e t r y  e lements  a long  one  or 
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two of the Blickrichtungen are symbolized by the iden- 
tity symbol 1, in order to: (a) distinguish rhombohedral 
from hexagonal (e.g. 31 from 311); (b) distinguish two 
different subgroups of the lattice symmetry, when they 
belong to one and the same point group among the 
32 (e.g. 312 and 321, in h); optionally, (c) express the 
complete symbol, for the sake of unity in symbolism, 
even though no confusion is likely (e.g. 231 in c; 611 in 
h; 7411 in t). In the monoclinic crystal symmetries, there 
exists only one lattice symmetry direction, which ob- 
viously cannot become 1 (since 1 is not a monoclinic 
merohedry), and no other direction can be written 1 
(since it is not a Blickrichtung - see Appendix, Note 4). 

The derivation (Table 1, column 2) yields 44 different 
symbols for the 32 traditional point groups (so-called 
'crystal classes'). Note that, with the smallest conven- 
tional cell determined and used to select the axes of 
coordinates, it is necessary to consider two subgroups 
instead of one in four cases in h and one case in t; 
examples: 321 and 312, 742m and 74m2. Under o three 
different subgroups are possible, 2mm, m2m, mm2, in- 
stead of the usually given mm2; they correspond to 
actual cases met in practice. It is thus easy to account 
for the additional twelve crystal-symmetry symbols 
that bring 32 to 44:5 for the rhombohedral system, 4 
under h, 1 under t, 2 under o. The number of crystal- 
symmetry symbols in each system appears in the lower 
right corner of the appropriate pigeonhole (column 2). 

The required lattice modes are shown for each lattice 
symmetry (column 3). In the rhombohedral system r, 
the smallest conventional cell is a primitive rhombo- 
hedron rP; in practice, however, the same rhombo- 
hedral lattice is described by means of the hR cell, a 
triple cell obtained by taking an h cell and 'R-centering' 
it. Note that hR is not a mode of the hexagonal lattice: 
it is an alternate way of defining the rhombohedral 
lattice (see Appendix, Note 5), whose symmetry is 
lower than that of the hexagonal lattice hP. The 
number of possible combinations of crystal symmetries 
with lattice modes appears in the lower right corner of 
the pigeon-hole pertaining to the system (column 3). 
These combinations are the various symbols that can 
occur for the 73 symmorphic space groups when the 
edges of the smallest conventional cell are arbitrarily 
labelled. The numbers of combinations are the same as 
those of symmetrically distinct symmorphic groups in 
all systems except o (30 vs 13) and m (12 vs 6); the total 
is 96 vs 73. All 96 possibilities are encountered in prac- 
tice, and the crystallographer must recognize the equiv- 
alence of the symbol he has found with that under 
which the space group is described in IT;* special 
tables (see Appendix, Note 6) for this purpose are 
provided in I T (1952). In a determinative compendium 
like Crystal Data (Donnay & Ondik, 1972-73), where 
the cell edges are labelled according to a metrical 
convention (c<a<b in the triclinic case), the larger 

* Internationale "Fabellen :ur Bestimmung der Kristallstrukturen 
and International 7able.~ Jor X-ray ('ry,~tallography are both ab- 
breviated as IT, with appropr ia te  dates. 

number of oriented space-group symbols is definitely 
an asset. 

At one time (IT, 1935) setting conventions were 
based on symmetry instead of metrical considerations. 
Each crystal symmetry had only one symbol; example: 
the first subgroup of 6/m 2/m 2/m was written 6m2, 
whereas the corresponding hemihedry in 4/m 2/m 2/m 
was written 742m, in accordance with the mineralogists' 
tradition. The necessary distinction between the two 
possibilities was achieved, not by changing the point- 
group symbol, but by using either a simple or a mul- 
tiple cell. In h if ~m2 had a P cell, then our present 
62m was expressed by ~m2 with an H cell (additional 

12 21 nodes at :~:~0 and 770). This scheme is given here (col- 
umns 4 and 5) for comparison. (Note, however, that 
the hexagonal and rhombohedral systems appear in 
the form that is advocated in this paper.) In 1952 the 
new (English) edition of IT went over to the metrical 
convention in systems h and t, instead of keeping a 
conventional way of writing the point-group symbol. 
In the low symmetry systems o and m, the 1935 edition 
of the Tables chose to label the cell edges according to 
symmetry considerations, so that the centering of one 
face would always be C, except in mm2, where the 
twofold axis was chosen as c and the one-face-centered 
lattice was centered either on C or on A (but never on 
B). In this paper it is recommended to go all the way to 
metrical conventions and to let the space-group sym- 
bol take care of itself. The 1935 scheme correctly 
enumerates the 73 symmorphic space groups that are 
possible if the relation between the symmetry and the 
shape of the cell is ignored. 

Finally Table 1 also lists the traditional arrangement 
of the 32 crystal symmetries (column 6). The five sym- 
metries whose symbols begin with a 3 or a 3 are placed 
in a special division that is called rhombohedral by 
some and trigonal by others (IT, 1952). This scheme is 
inadequate properly to express the crystallographic 
facts brought out in columns 2 and 3. 

The inadequacy of the current classification 

The claim to fame of the 32 crystal symmetries is that 
they purport to represent the result of a mathematical 
enumeration of the distinct crystallographic point 
groups. Only to the extent that these groups are subject 
to the limitation imposed on rotation axes by the old 
Law of Rationality (long before the lattice was even 
postulated) can one say that they are 'crystallographic'. 
They pay no heed to the underlying lattice in relation 
to which the crystal symmetry must be oriented. One 
can truly state that the 32 symmetries of column 6 are 
the only possible ones for wooden crystal-form models, 
which have no lattice to give significance to their 
various orientations in space. And indeed, if no distinc- 
tion is made between 3ml and 31m on the one hand, and 
3m on the other, so that all three cases merge into one, 
then it is true that the crystal forms are the same in all 
three cases. But the interplanar spacings may be dif- 
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ferent in a given form if it occurs in h or in r, and 
morphologists can differentiate the two cases on the 
basis of the law of Bravais (see Appendix, Note 7). 

The scheme of 32 crystal symmetries presented as 
shown (column 6) has many disadvantages. Chief 
among them is the confusion (see Appendix, Note 8) 
that results from removing half of the 16 hexagonal 
groups (column 2) from their lawful supergroup 
6/m 2/m 2/m and forcing them into the subgroups of 

2/m, where they clearly do not belong. 
A second disadvantage of column 6 is that it per- 

petuates the mentality of pre-lattice crystallography" 
to this day some mineralogy books assign low quartz 
to the 'rhombohedral '  system. 'Rhombohedral ' ,  here, 
is of course a synonym for 'trigonal'. Technically this 
is not a 'mistake', since quartz does possess point 
symmetry 32 (in column 6). Albeit, I submit that this 
information is trivial as compared to the structural and 
morphological importance of the hexagonal lattice in 
quartz. Changing 'rhombohedral '  into 'trigonal' is not 
much of an improvement: calcite and quartz are now 
trigonal; are they both rhombohedral,  both hexagonal, 
and if one is rhombohedral and the other hexagonal, 
which is the one and which the other? 

A third drawback of column 6 stems from the con- 
sideration of the lattice complexes in h and r space 
groups. The two sets are very different. It is well known 
that all the point positions in which a given lattice 
complex can be realized occur in 'one and the same 
crystal system' (Fischer et al., 1973, p. 11, column 1). 
This statement is true in column 2 and in column 4, but 
not in column 6, as one can easily check by glancing at 
the Table of lattice-complex occurrences (Fischer et al., 
Table 26-27). Hexagonal lattice complexes are realized 
in crystal symmetries including one 3 as well as in those 
that include a 6; the rhombohedral complexes materi- 
alize only in rhombohedral space groups. Rhombo- 
hedral complexes are quite different from hexagonal 
ones as regards multiplicity. Let us use the triple hR 
cell and the hP cell, of equal volumes, for ease of com- 
parison. Regardless of the variance of the lattice com- 
plexes, multiplicities 1, 2, 4, 8, 24 are found only in hex- 
agonal space groups; 9, 18, 36, only in rhombohedral 
ones; 3, 6, 12, mostly in hP, except that 3, 6 and 6, 12 also 
occur in hR, in invariant and univariant complexes, 
respectively. Of course, two complexes of the same 
multiplicity will differ markedly in hP and hR. 

A fourth drawback of column 6 is met in the study 
of twins. The classical theory of twinning (see Friedel, 
1926) rests on a comparison of the point symmetry of 
the crystal with that of its lattice (or of one of its super- 
lattices). Examples" in quartz twins the crystal symme- 
try 321 is a tetartohedry (subgroup of index 4) of the 
lattice symmetry 6/m 2/m 2/m; in calcite twins on 
(111), = (0001)h, the lattice symmetry 3 2/m is a hemi- 
hedry (subgroup of index 2) of the symmetry of the 
superlattice 6/m 2/m 2/m. These apparently subtle, yet 
fundamental, distinctions are hopelessly obliterated 
in the scheme of column 6. 

Historical perspective 

The classification advocated in this paper stems from 
the recognition of the point symmetry of the lattice 
as the natural basis for the seven main subdivisions of 
the crystal kingdom; this approach has been taught 
since Bravais's time and can be found in many text- 
books. Mallard (1879), followed by Friedel ( 1911, 1926), 
Donnay & Harker (1940), and Donnay (1942) among 
others, already stressed the fact that the crystal point 
symmetries, being the merohedries of the lattice point 
symmetry, cannot number fewer than 37, inasmuch as 
the trigonal symmetries (see Appendix, Note 9) must 
appear as merohedries of two different lattice symme- 
tries. Mallard (1879) also gives a detailed explanation 
of the necessity for splitting such symbols as 6m2, 32, 
and 742m into 6m2 + 62m, 321 + 312, 3,2m + 7~m2, respec- 
tively. The splitting of mm2 into 2mm, m2m, mm2, and 
the alternate symbols for the one-face centering in the 
orthorhombic system, have also long been used (see, 
for instance, Donnay & Harker, 1940; Donnay, No- 
wacki & Donnay, 1954; Donnay, 1955). In the mono- 
clinic system, two centering modes, C and A, were 
used by Donnay & Harker (1940) and all three modes, 
C, A and I, are found in the first edition of Crystal Data 
(Donnay et al., 1954). 

The proposal made in this paper, therefore, cannot 
claim to be original in the usual sense of the word. 
Whatever originality it has consists in drawing the 
attention of the crystallographic profession to an an- 
omalous situation that has endured for over a century 
(see Appendix, Note 10). 

Professor Gabrielle Donnay, McGill University, has 
contributed many discussions and much encourage- 
ment. Dr Y. Le Page kindly read the manuscript. 
Thanks are also due to the two referees for their per- 
tinent suggestions: to sharpen the statement as to 
which subgroup is the lowest to be included in a given 
system, 311 in h, in particular; to rewrite, in more 
detail, the story in Note 8 of the Appendix; to increase 
the number of references where an original is hard to 
find. 

This work was supported by the Minist6re de l'Edu- 
cation of the Province of Quebec, under the Pro- 
gramme de formation de chercheurs et d'action 
concert6e. 

APPENDIX 

Note 1 
In the hexagonal system the smallest cell is called 

'hexagonal' even though its shape is that of a right 
prism whose cross section is a 120 ° rhomb. It has often 
been said that this cell 'brings out' the symmetry of the 
lattice. This is, at best, a half-truth: the only polyhedron 
that performs this feat is Haiiy's forme primitive, nearly 
200 years old and better known nowadays under such 
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names as Dirichlet domain, Voronoi domain, Brillouin 
zone, Wigner-Seitz cell, 'domain of influence' ([44r- 
kungsbereich; see Burzlaff & Zimmermann, 1977, p. 
131). In the rhombohedral system the smallest conven- 
tional cell is a rhombohedron. 

Note 2 
The definition of 'holohedry' is repeated here to 

forestall confusion with the bad usage found in Inter- 
nationale Tabellen zur Bestimmung der Kristallstruk- 
turen (1935) l I T  (1935), p. 274], where 6m2 is called 
'trigonal holohedry'! I traced this mistake back to 
Schoenflies (1891, p. 229). It is explained, though not 
justified, by the fact that Schoenflies used rotatory re- 
flection instead of rotator~¢ inversion, so that our 3 was 
expressed with a 6 ($6 =6) and our 6, with a 3 (D3 = 
3/m). His 'trigonal crystal type' (which he compares to 
the 'ordinary crystal system') contains: 6m2, 32, 6, 3m, 3. 
His 'hexagonal crystal type' includes 32/m and 3. 
Amazing as it may seem, it is clear that, in his mind, 
'holohedry' was completely divorced from the concept 
of lattice symmetry. This conclusion is confirmed by 
the fact that Schoenflies gives eight holohedries (IT, 
1935, page 33) and gives only one name to each trigonal 
symmetry; for example, symmetry 3 is called 'rhombo- 
hedral tetartohedry', but is not recognized as 'hexag- 
onal ogdohedry'. A similar omission was made in 
IT  (1952), Table 3.9.1, where the five trigonal symme- 
tries are considered merohedries of a trigonal (instead 
of rhombohedral) lattice and no mention is made of 
the possible hexagonal lattice. This presentation, 
erroneously attributed to 'Friedel (1926)', was corrected 
by the insertion of an 'additional note' in a later 
printing. 

Note 3 
The term Blickrichtungen is familiar to the former 

students of C. Hermann in Marburg/Lahn. For its def- 
inition, see Burzlaff & Zimmermann (1977, p. 135, 
sections f and g). Its first appearance in print could not 
be ascertained. 

Note 4 
In the monoclinic system, lattice rows of the type 

[u0v], which obviously are not Blickrichtungen, have 
abusively been assigned dummy l's (IT, 1952) to repre- 
sent coordinate axes, with the resulting destruction of 
the unique character of the Hermann-Mauguin  nota- 
tion as a symmetry symbolism (Mauguin, 1931; Her- 
mann, 1931). Note that such symbols as '121' and '112' 
would be legitimate in an orthorhombic context, if 
used to express subgroups of 2/m 2/m 2/m, despite the 
fact that these subgroups are not orthorhombic 
merohedries. A. L. Patterson, however, has proposed 
to write them '.2.' and '..2' [see IT  (1959), §2.1.12.3 (7), 
p. 31] ; this scheme, which appears to have priority, has 
been used extensively to symbolize oriented site 
symmetries in space groups (Fischer, Burzlaff, Hellner 
& Donnay, 1973; Donnay & Turrell, 1974). The unity 

of the Hermann-Mauguin  symbolism can only be 
restored by abandoning the 'z-unique' superfluous con- 
vention (cf Note 6). 

Note 5 
Just as the rhombohedral lattice can be described 

by means of a triple hexagonal cell, it is known that an 
hexagonal lattice can be defined by a triple rhombo- 
hedral cell. This cell, which has its 'centering' nodes at 
1 1 1 ,.--,4 2 2 2 (rhombohedral coordinates), is not used in 
practice and has received no name. If a name is ever 
needed, the symbol rH is available. The letter H is 
already used to designate a triple hexagonal cell, in 
which the extra nodes are thirding the long diagonal 
of the rhombic mesh; this triple cell hH describes the 
same hexagonal lattice as hP. In rH it is the vertical 
body diagonal that is thirded, and rH is not a mode of 
the rhombohedral  lattice. The new symbol brings out 
the parallelism between the two cases: hR = rP, rH = 
hP. In symbols hR and rH, the capital letter tells the 
crystal system. 

Note 6 
It is mystifying to observe that Table 6.2.1 in IT  

(1969), p. 545, which gives all the possible symbols for 
the orthorhombic space groups, offers only three lat- 
tice modes in the monoclinic system (four are possible). 
Although 78 different space-group symbols are dis- 
played on six fully filled columns, they impart only 
three fourths of the desired information, whereas 29 
symbols suffice to present all of it in Crystal Data (see, 
Donnay & Ondik, 1972-1973, p. S-43). The complica- 
tions arise from the introduction of the so-called 'first 
setting', in addition to the traditional y-unique con- 
vention (dubbed 'second' setting!). This permutation 
of coordinate axes is of questionable or marginal use- 
fulness; it clutters the Tables; it makes for confusion; 
it violates the spirit of the Hermann-Mauguin  sym- 
bolism (cf Note 4) and will entail duplication in the 
description of the monoclinic space groups, which 
already needs considerable lengthening to cope with 
difficulties that are due to Nature's own doing and 
could well do without additional man-made compli- 
cations. Crystallographers must face the facts that, 
once the smallest conventional cell is chosen and 
labelled, the lattice mode will be expressed by one of 
four different symbols and the plane of symmetry, in 
the space-group symbol, by one of four different letters. 
It would appear to be of much less importance to be 
given the option of calling the axes zxy instead of yzx, 
for this is not a matter of'setting': the crystal is set the 
same way with respect to its lattice in either case; the 
only real difference is one of algebraic semantics. Many 
thorny problems will vanish when the 'z-unique' option 
finally disappears from IT  after a 25-year probation 
period. It can still remain open, under the terms of the 
Stockholm decision, to the virtuosi of symmetry theory, 
who in any event do not need any help from IT  to 
practice their craft. 
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Note 7 

The French crystallographer Henri Ungemach 
(1877-1936) still used a nomenclature of crystal forms 
in which rhombohedral hemihedral and hexagonal 
tetartohedral forms, for instance, were given different 
names (despite their being geometrically the same); 
these names were intended to stress differences stem- 
ming from the lattice involved in each case. Ex- 
ample: the trigonal trapezohedron in low quartz was 
called a tetartodipyramid; had the quartz lattice been 
rhombohedral  instead of hexagonal, it would have been 
a hemiscalenohedron. (These names have long been 
abandoned, but they are typical of an era when crystal- 
lographers determined morphological lattices.) 

Note 8 

Let me give an example of this confusion. A few years 
ago I received a letter from a practicing crystal- 
lographic consultant, who actually thought that 
'trigonal P' and 'trigonal R' were two modes of a 
'trigonal lattice', just as, in the cubic system, the lattice 
modes are 'cubic P,, 'cubic I' and 'cubic F'. He had ob- 
served that space groups such as P3 and R3 appear in 
IT  on pages marked 'trigonal' in the same manner as 
P23, I23, F23 are found under 'cubic'. He was telling 
me that he knew that 'all hexagonal space groups' have 
the 'hexagonal P' lattice; he also knew that 'trigonal R' 
meant ' rhombohedral  lattice', but he could not any- 
where find any description of the 'trigonal P lattice'! 
(I do not blame him for taking the Tables too literally: 
I might have been puzzled myself, had I not served so 
many years on the IUCr Commission on International 
Tables.) On learning that 'trigonal P' and 'hexagonal P' 
designate the same lattice, my correspondent was so 
shocked that he wanted everyone else to know and 
insisted I should publish a clarifying note about it! 

Note 9 

'Trigonal symmetries' is a convenient term that can 
be retained, when the lattice is not considered, to desig- 
nate the five point groups that contain a single threefold 
axis, with or without the center (i), but without a mirror 
(m) perpendicular to it (3/m = 6). 

Note 10 

This paper is offered in the hope that practicing 

crystallographers will make their voices heard, through 
their National Committees, to obtain the needed revi- 
sions of Vol. I of IT. 
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